Direct-Pumped Nd:YLF Laser

Bhabana Pati1 and Glen A. Rines2

1Q-Peak Inc., 135 South Road, Bedford, MA 01730, 2Now at BAE Systems, 95 Canal Street, Nashua, NH 03061
CLEO/QELS, May 6-11, 2012, San Jose, CA

Motivations

- To improve the optical efficiency of the Nd:YLF laser by employing direct optical pumping of the upper level of the 1-micron laser transition.
 - pump at 863 nm instead of 808 nm.
 - predict 10\% improvement in the optical efficiency.

- To reduce the quantum defect between the pump photons and the laser photons. This leads to a decrease in the thermal load in the laser crystal itself.
 - predict 10\% decrease in heat load.

Conclusions

- In this work we have demonstrated an improved laser performance for Nd:YLF operating at 1047 nm by directly pumping the upper laser level at 863 nm.
- We measured an 11\% improvement in the optical slope efficiency of a normal-mode oscillator by replacing the conventional 806-nm pump diodes with 863-nm diodes.
- We generated 25 mJ of energy in a Q-switched and multimode beam with a 100 mJ of pump diode energy.
- Improved efficiency and reduced heat load is of importance in a space-based system.
- We designed a compact and rugged package size: 24.5 x 14 x 10 cm3, weight 3.5 kg.

Acknowledgement

This work was funded by NASA Phase II SBIR (Contract \# NNX08CC28P).