CdSe OPO pumped by a 2.79-um Cr,Er:YSGG laser

David M. Rines, Glen A. Rines and Peter F. Moulton
ACKNOWLEDGEMENTS

SPONSOR
US Army
Night Vision and Electronic Sensors Directorate
Ft Belvoir, Virginia

CdSe MATERIAL
Gary Catella, Michael Panfil and Lee Shiozawa
Cleveland Crystals, Inc.
Highland Heights, OH
BACKGROUND
 Why CdSe?
 Why Cr,Er:YSGG?

Cr,Er:YSGG LASER

CdSe OPO

SUMMARY

LOOKING AHEAD
Large, low-scatter crystals (10x10x50 mm)

Low absorption
<0.002 cm$^{-1}$ @ 1.06 um
<0.001 cm$^{-1}$ @ 2.79 um
<0.001 cm$^{-1}$ @ 10.6 um

Large non-linear coefficient
deff = 17 - 18 pm/V

Low walk-off

Good thermal conductivity

Near NCPM with 2.79-um pump
CdSe PHASE-MATCHING, 2.79-um PUMP

Data

Atmospheric windows

Angle (deg)

Signal Wavelength (um)

Idler Wavelength (um)
POWER THRESHOLD FIGURE OF MERIT

- AgGaSe, I
- AgGaSe, II
- CdSe, II
- ZnGeP2, I
- ZnGeP2, II

POWER THRESHOLD (MW) vs SIGNAL (um)
EARLY RESULTS
25 mJ, 2 Hz, 50 ns, TEMoo
90 mJ, 2 Hz, 80 ns, multimode

GENERAL CHARACTERISTICS
1% Cr, 30% Er
+ low threshold
+ high PRF
+ 2.79 um operation
- thermo-optics properties
<table>
<thead>
<tr>
<th>PUMP CHAMBER COMPARISON</th>
<th>Pump Uniformity</th>
<th>Thermal lens focal length (cm)</th>
<th>Lens Astigmatism (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close-coupled silver</td>
<td>poor</td>
<td>32, 24</td>
<td>8</td>
</tr>
<tr>
<td>Racetrack spectralon</td>
<td>fair</td>
<td>38, 36</td>
<td>2</td>
</tr>
<tr>
<td>Elliptical silver</td>
<td>excellent</td>
<td>23, 15</td>
<td>8</td>
</tr>
</tbody>
</table>
2.79-μm Cr,Er:YSGG OSCILLATOR

OUTPUT:
25 mJ, 10 Hz, 35 ns
M2 = 2.8 x 1.4
Linear polarization

LiNbO₃ Q-Switch
75 cmcx HR
5 x 75 mm
75 cmcx HR
10 mcc HR
Flat 60 %R

75 cmcx HR
49°
Cr, Er:YSGG AMPLIFIER

Cr, Er:YSGG OSCILLATOR
25 mJ, 10 Hz
2.79 um

12 cmcx HR
@ 2.79um

5 x 75 mm AMPLIFIER

Si Plate

OUTPUT:
63 mJ, 10 Hz, 35 ns
Linear polarization
OUTPUT
15 mJ @ 3.87 um, 10 Hz, 23 ns
Signal tuning 3.58 - 4.18 um
28% pump-to-signal slope
Idler tuning 12.6 - 8.3 um
reasonably good beam quality
Cr,Er:YSGG OSCILLATOR
25 mJ, 10 Hz, 35 ns, 2.79 um
$M^2 = 2.8 \times 1.4$
Linearly Polarized

AMPLIFIER
83 mJ, 10 Hz, 35 ns
(63 mJ linearly polarized)

CdSe OPO
15 mJ, 10 Hz, 23 ns, 3.87 um
Tuning:
3.58 - 4.18 um (signal)
12.6 - 8.3 um (idler)
28% pump-to-signal slope efficiency
Better lamp-pumped materials

Pulsed, diode-pumped Er lasers
 2.4 mJ, 10 Hz, 9% slope (Dinerman, et al., ASSL '94)

Tandem OPO's